A smoothing majorization method for l22-lpp matrix minimization

نویسندگان

  • Yue Lu
  • Liwei Zhang
  • Jia Wu
چکیده

We discuss the l2-lp (with p ∈ (0, 1)) matrix minimization for recovering low rank matrix. A smoothing approach is developed for solving this non-smooth, non-Lipschitz and non-convex optimization problem, in which the smoothing parameter is used as a variable and a majorization method is adopted to solve the smoothing problem. The convergence theorem shows that any accumulation point of the sequence generated by the smoothing approach satisfies the necessary optimality condition for the l2-lp problem. As an application, we use the proposed smoothing majorization method to solve matrix completion problems. Numerical experiments indicate that our method is very efficient for obtaining the high quality recovery solution for matrix completion problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsity-based Correction of Exponential Artifacts

This paper describes an exponential transient excision algorithm (ETEA). In biomedical time series analysis, e.g., in vivo neural recording and electrocorticography (ECoG), some measurement artifacts take the form of piecewise exponential transients. The proposed method is formulated as an unconstrained convex optimization problem, regularized by smoothed l1-norm penalty function, which can be ...

متن کامل

Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization

Majorization-minimization algorithms consist of iteratively minimizing a majorizing surrogate of an objective function. Because of its simplicity and its wide applicability, this principle has been very popular in statistics and in signal processing. In this paper, we intend to make this principle scalable. We introduce a stochastic majorization-minimization scheme which is able to deal with la...

متن کامل

Relaxed Majorization-Minimization for Non-Smooth and Non-Convex Optimization

We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the directional derivatives of the objective function and its surrogate function vanishes when the number of iterations approaches infinity, which is a very...

متن کامل

Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing

A novel approach to linear dimensionality reduction is introduced that is based on Locality Preserving Projections (LPP) with a discretized Laplacian smoothing term. The choice of penalty allows us to incorporate prior information that some features may be correlated. For example, an n1 × n2 image represented in the plane is intrinsically a matrix. The pixels spatially close to each other may b...

متن کامل

Distributed Majorization-Minimization for Laplacian Regularized Problems

We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified models, and multi-period portfolio optimization. We develop a distributed majorizationminimization method for this general problem, and derive a comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2015